МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ УПРАВЛЕНИЕ ОБРАЗОВАНИЯ АДМИНИСТРАЦИИ ХВАЛЫНСКОГО МУНИЦИПАЛЬНОГО РАЙОНА

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа № 1 города Хвалынска Саратовской области

Охулина С.А.

РАССМОТРЕНО

МО предметов "Естественнонаучного курса"

Горбунова Н.Г.

<u>Протокол №1</u> от «30» августа 2023 г.

СОГЛАСОВАНО

Заместитель директора по

Видено-кин А.Г.

DIII № 1

*«(04) сентября 2023 г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Астрономия. Базовый уровень»

для обучающихся 11 классов

г. Хвалынск, 2023

Рабочая программа по учебному предмету «Астрономия» (базовый уровень) (предметная область «Естественно-научные предметы») включает пояснительную записку, содержание обучения, планируемые результаты освоенияпрограммы по физике, тематическое планирование.

Пояснительная записка отражает общие цели и задачи изучения астрономии, характеристику психологических предпосылок к его изучению обучающимися, место в структуре учебного плана, а также подходы к отбору содержания, к определению планируемых результатов.

Содержание обучения раскрывает содержательные линии, которые предлагаются для обязательного изучения в каждом классе на уровне среднего образования.

Планируемые результаты освоения программы по астрономии включают личностные, метапредметные результаты за весь период обучения на уровне среднего общего образования, а также предметные достижения обучающегося за каждый год обучения.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по астрономии базового уровня на уровне среднего общего образования разработана на основе положений и требований к результатам освоения основной образовательной программы, представленных в ФГОС СОО, а также с учётом федеральной рабочей программы воспитания и концепции преподавания учебного предмета «Астрономия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы.

Содержание программы по астрономии направлено на формирование естественно- научной картины мира обучающихся 11 классов при обучении астрономии на базовом уровне на основе ИХ системно-Программа по астрономии деятельностного подхода. соответствует требованиям ФГОС СОО к планируемым личностным, предметным и метапредметным результатам обучения, а также учитывает необходимость реализации межпредметных связей астрономии с естественно- научными учебными предметами. В ней определяются основные цели изучения астрономии на уровне среднего общего образования, планируемые результаты освоения курса астрономии: личностные, метапредметные, предметные (на базовом уровне).

Программа по астрономии включает:

планируемые результаты освоения курса астрономии на базовом уровне, в том числе предметные результаты по годам обучения;

содержание учебного предмета «Астрономия».

Астрономия в российской школе всегда рассматривалась как курс, который, завершая физико-математическое образование выпускников средней школы, знакомит их с современными представлениями о строении и эволюции Вселенной и способствует формированию научного мировоззрения. В настоящее время важнейшими задачами астрономии являются формирование представлений о единстве физических законов, действующих на Земле и в безграничной Вселенной, о непрерывно происходящей эволюции нашей планеты, всех космических тел и их систем, а также самой Вселенной.

Целями изучения астрономии на данном этапе обучения являются: □ осознание принципиальной роли астрономии в познании фундаментальных законов природы и формировании современной естественнонаучной картины мира; □ приобретение знаний о физической природе небесных тел и систем, строении и эволюции Вселенной, пространственных и временных масштабах Вселенной, наиболее важных астрономических открытиях, определивших развитие науки и техники; □ овладение умениями объяснять видимое положение и движение небесных тел принципами определения местоположения и времени по астрономическим объектам, навыками практического использования компьютерных приложений для определения вида звездного неба в конкретном пункте для заданного времени; 🗆 развитие познавательных интересов, интеллектуальных и творческих знаний способностей приобретения В процессе ПО астрономии источников информации современных использованием различных И информационных технологий; □ использование приобретенных знаний и умений для решения практических задач повседневной жизни; □ формирование научного мировоззрения; □ формирование навыков использования естественнонаучных и особенно физико - математических знаний для объективного анализа устройства окружающего мира на примере достижений современной астрофизики, астрономии и космонавтики.

Учебный предмет «Астрономия» направлен на формирование у учащихся естественнонаучной картины мира, познавательных интересов, интеллектуальных и творческих способностей. Он играет важную роль в становлении гражданской позиции и патриотическом воспитании выпускников, так как Россия занимает лидирующие позиции в мире в развитии астрономии, космонавтики и космофизики.

Задача астрономии заключается в формировании у обучающихся естественнонаучной грамотности как способности человека занимать активную гражданскую позицию по вопросам, связанным с развитием естественных наук

и применением их достижений, а также в его готовности интересоваться естественнонаучными идеями.

Современный образованный человек должен стремиться участвовать в аргументированном обсуждении проблем, относящихся к естественным наукам и технологиям, что требует от него следующих компетентностей:

ИΊ	технологиям, что тро	логиям, что треоует от него следующих компетентностеи:						
	научно объяснять явления;							
□ понимать основные особенности естественнонаучного исследования;								
	интерпретировать	данные	И	использовать	научные	доказательства	для	
получения выволов.								

Календарно-тематическое планирование обеспечивает взаимосвязанное развитие и совершенствование ключевых, общепредметных и предметных компетенций. Система уроков сориентирована не столько на передачу «готовых знаний», сколько на формирование активной личности, мотивированной к самообразованию, обладающей достаточными навыками и психологическими установками к самостоятельному поиску, отбору, анализу и использованию информации. Это поможет выпускнику адаптироваться в мире, где объем информации растет в геометрической прогрессии, где социальная и профессиональная успешность напрямую зависят от позитивного отношения к новациям, самостоятельности мышления и инициативности, от готовности проявлять творческий подход к делу, искать нестандартные способы решения проблем, от готовности к конструктивному взаимодействию с людьми.

Основой целеполагания является обновление требований к уровню подготовки обучающихся, отражающее важнейшую особенность педагогической концепции государственного стандарта— переход от суммы «предметных результатов» (то есть образовательных результатов, достигаемых в рамках отдельных учебных предметов) к межпредметным и интегративным результатам. Для информационно-компьютерной поддержки учебного процесса предполагается использование программно-педагогических средств, реализуемых с помощью компьютера.

Планируемые результаты изучения учебного предмета «Астрономия».

Программа обеспечивают достижение выпускниками средней школы определённых личностных, метапредметных и предметных результатов.

Личностными результатами освоения курса астрономии в средней (полной) школе являются:

- 1) сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики;
- 2) сформированность основ саморазвития и самовоспитания; готовность и способность к самостоятельной, творческой и ответственной деятельности (образовательной, коммуникативной и др.);
- 3) сформированность навыков продуктивного сотрудничества со сверстниками, детьми старшего и младшего возраста, взрослыми в образовательной,

общественно полезной, учебно-исследовательской, учебно-инновационной и других видах деятельности;

4) готовность и способность к образованию и самообразованию на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;

Метапредметные результаты освоения программы предполагают:

- находить проблему исследования, ставить вопросы, выдвигать гипотезу, предлагать альтернативные способы решения проблемы и выбирать из них наиболее эффективный, классифицировать объекты исследования, структурировать изучаемый материал, аргументировать свою позицию, формулировать выводы и заключения;
- анализировать наблюдаемые явления и объяснять причины их возникновения;
- на практике пользоваться основными логическими приемами, методами наблюдения, моделирования, мысленного эксперимента, прогнозирования;
- выполнять познавательные и практические задания, в том числе проектные;
- извлекать информацию из различных источников (включая средства массовой информации и интернет-ресурсы) и критически ее оценивать;
- готовить сообщения и презентации с использованием материалов, полученных из Интернета и других источников.

Метапредметные результаты освоения основной образовательной программы представлены тремя группами универсальных учебных действий (УУД).

Универсальные учебные действия:

Регулятивные УУД:

- 1. Целеполагание, как постановка учебной задачи на основе соотнесения того, что уже известно и усвоено и того, что еще неизвестно по данной теме.
- 2. Составление плана и последовательности действий в решении задач.
- 3. Коррекция внесение необходимых дополнений и корректив в план решения задач и способ действия в случае расхождения эталона, реального действия и его продукта.
- 4. Оценка выделение и осознание обучающимися того, что уже усвоено и что еще подлежит усвоению, осознание качества и уровня усвоения темы.
- 5. Волевая саморегуляция как способность к мобилизации сил и энергии; способность к волевому усилию, к выбору ситуации мотивационного конфликта и к преодолению препятствий.

Познавательные УУД:

- 1. Самостоятельное выделение и формулирование познавательной цели.
- 2. Поиск и выделение необходимой информации.
- 3. Выбор наиболее эффективных способов решения задач.
- 4. Смысловое чтение как осмысление цели чтения.

- 5. Умение адекватно, осознано и произвольно строить речевое высказывание в устной и письменной речи.
- 6. Способность и умение обучающихся производить простые логические действия (анализ, синтез, сравнение, обобщение).

Коммуникативные УУД:

- 1. Сознательная ориентация обучающихся на позиции других людей, умение слушать и вступать в диалог, участвовать в коллективном обсуждении проблем.
- 2. Умение интегрироваться в группу сверстников при работе в группах.
- 3. Умение строить продуктивное взаимодействие и сотрудничество со сверстниками и взрослыми при изучении темы.
- 4. Умение использовать адекватные языковые средства.
- 5. Умение ясно, логично и точно излагать свою точку зрения.

Предметные результаты изучения астрономии в средней (полной) школе представлены по темам.

Предметные результаты изучения темы «*Практические основы астрономии*» позволяют:

- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;
- применять звездную карту для поиска на небе определенных созвездий и звезд. Предметные результаты изучения темы «Строение Солнечной системы» позволяют:
- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Предметные результаты изучения темы «Природа тел Солнечной системы» позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их значительных различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Предметные результаты освоения темы «Солнце и звезды» позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;
- описывать механизм вспышек новых и сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;

— характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Предметные результаты изучения темы *«Строение и эволюция Вселенной»* позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- формулировать закон Хаббла;
- определять расстояние до галактик на основе закона Хаббла; по светимости сверхновых;
- оценивать возраст Вселенной на основе постоянной Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения Большого взрыва;
- интерпретировать современные данные об ускорении расширения Вселенной как результата действия антитяготения «темной энергии» вида материи, природа которой еще неизвестна.

Предметные результаты «Жизнь и разум во Вселенной» позволяют:

— систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной.

Обеспечить достижение планируемых результатов освоения основной образовательной программы, создать основу для самостоятельного успешного усвоения обучающимися новых знаний, умений, видов и способов деятельности должен системно-деятельностный подход. В соответствии с этим подходом именно активность обучающихся признается основой достижения развивающих целей образования — знания не передаются в готовом виде, а добываются учащимися в процессе познавательной деятельности.

Одним из путей повышения мотивации и эффективности учебной деятельности в средней школе является включение учащихся <u>в учебно-исследовательскую и проектную деятельность, которая имеет следующие</u> особенности:

1) цели и задачи этих видов деятельности учащихся определяются как их личностными мотивами, так и социальными. Это означает, что такая деятельность должна быть направлена не только на повышение компетентности

подростков в предметной области определенных учебных дисциплин, не только на развитие их способностей, но и на создание продукта, имеющего значимость для других;

- 2) учебно-исследовательская и проектная деятельность должна быть организована таким образом, чтобы учащиеся смогли реализовать свои потребности в общении со значимыми, референтными группами одноклассников, учителей и т. д. Строя различного рода отношения в ходе целенаправленной, поисковой, творческой и продуктивной деятельности, подростки овладевают нормами взаимоотношений с разными людьми, умениями переходить от одного вида общения к другому, приобретают навыки индивидуальной самостоятельной работы и сотрудничества в коллективе;
- 3) организация учебно-исследовательских и проектных работ школьников обеспечивает сочетание различных видов познавательной деятельности.

В этих видах деятельности могут быть востребованы практически любые способности подростков, реализованы личные пристрастия к тому или иному виду деятельности.

В результате учебно-исследовательской и проектной деятельности выпускник получит представление:

- о философских и методологических основаниях научной деятельности и научных методах, применяемых в исследовательской и проектной деятельности;
- о таких понятиях, как концепция, научная гипотеза, метод, эксперимент, надежность гипотезы, модель, метод сбора и метод анализа данных;
- о том, чем отличаются исследования в гуманитарных областях от исследований в естественных науках;
- об истории науки;
- о новейших разработках в области науки и технологий;
- о правилах и законах, регулирующих отношения в научной, изобретательской и исследовательских областях деятельности (патентное право, защита авторского права и т. п.);
- о деятельности организаций, сообществ и структур, заинтересованных в результатах исследований и предоставляющих ресурсы для проведения исследований и реализации проектов (фонды, государственные структуры, краудфандинговые структуры и т. п.).

Выпускник сможет:

- решать задачи, находящиеся на стыке нескольких учебных дисциплин (межпредметные задачи);
- использовать основной алгоритм исследования при решении своих учебно-познавательных задач;
- использовать основные принципы проектной деятельности при решении своих учебно-познавательных задач и задач, возникающих в культурной и социальной жизни;

- использовать элементы математического моделирования при решении исследовательских задач;
- использовать элементы математического анализа для интерпретации результатов, полученных в ходе учебно-исследовательской работы.

С точки зрения формирования универсальных учебных действий в ходе освоения принципов учебно-исследовательской и проектной деятельности выпускник научится:

- формулировать научную гипотезу, ставить цель в рамках исследования и проектирования, исходя из культурной нормы и сообразуясь с представлениями об общем благе;
- восстанавливать контексты и пути развития того или иного вида научной деятельности, определяя место своего исследования или проекта в общем культурном пространстве;
- отслеживать и принимать во внимание тренды и тенденции развития различных видов деятельности, в том числе научных, учитывать их при постановке собственных целей;
- оценивать ресурсы, в том числе и нематериальные, такие как время, необходимые для достижения поставленной цели;
- находить различные источники материальных и нематериальных ресурсов, предоставляющих средства для проведения исследований и реализации проектов в различных областях деятельности человека;
- вступать в коммуникацию с держателями различных типов ресурсов, точно и объективно презентуя свой проект или возможные результаты исследования, с целью обеспечения продуктивного взаимовыгодного сотрудничества;
- самостоятельно и совместно с другими авторами разрабатывать систему параметров и критериев оценки эффективности и продуктивности реализации проекта или исследования на каждом этапе реализации и по завершении работы;
- адекватно оценивать риски реализации проекта и проведения исследования и предусматривать пути минимизации этих рисков;
- адекватно оценивать последствия реализации своего проекта (изменения, которые он повлечет в жизни других людей, сообществ);
- адекватно оценивать дальнейшее развитие своего проекта или исследования, видеть возможные варианты применения результатов.

Обязательные результаты изучения курса «Астрономия» приведены в разделе «Требования к уровню подготовки выпускников», который полностью Требования соответствует стандарту. направлены на реализацию деятельностного личностно ориентированного И подходов; освоение интеллектуальной и практической деятельности; учащимися овладение знаниями и умениями, необходимыми в повседневной жизни, позволяющими ориентироваться в окружающем мире, значимыми для сохранения окружающей среды и собственного здоровья.

Рубрика «Знать/понимать» включает требования к учебному материалу, который усваивается и воспроизводится учащимися. Выпускники должны понимать смысл изучаемых физических понятий, физических величин и законов.

Рубрика «Уметь» включает требования, основанные на более сложных видах деятельности, в том числе творческой: описывать и объяснять физические явления и свойства тел, отличать гипотезы от научных теорий, делать выводы на основании экспериментальных данных, приводить примеры практического использования полученных знаний, воспринимать и самостоятельно оценивать информацию, содержащуюся в СМИ, Интернете, научно-популярных статьях.

Требования к уровню подготовки выпускников

Планируемые результаты освоения учебного предмета «Астрономия» **Учашиеся должны:**

1. Знать, понимать

- смысл понятий: геоцентрическая и гелиоцентрическая система, видимая звездная величина, созвездие, противостояния и соединения планет, комета, астероид, метеор, метеорит, метеороид, планета, спутник, звезда, Солнечная система, Галактика, Вселенная, всемирное и поясное время, внесолнечная планета (экзопланета), спектральная классификация звезд, параллакс, реликтовое излучение, Большой Взрыв, черная дыра;
- смысл физических величин: парсек, световой год, астрономическая единица, звездная величина;
- смысл физического закона Хаббла;
- основные этапы освоения космического пространства;
- гипотезы происхождения Солнечной системы;
- основные характеристики и строение Солнца, солнечной атмосферы;
- размеры Галактики, положение и период обращения Солнца относительно центра Галактики;

смысл понятий: активность, астероид, астрология, астрономия, астрофизика, атмосфера, болид, возмущения, восход светила, вращение небесных тел, Вселенная, вспышка, Галактика, горизонт, гранулы, затмение, виды звезд, зодиак, календарь, космогония, космология, космонавтика, космос, кольца планет, кометы, кратер, кульминация, основные точки, линии и плоскости небесной сферы, магнитная буря, Метагалактика, метеор, метеорит, метеорные тело, дождь, поток, Млечный Путь, моря и материки на Луне, небесная механика, видимое и реальное движение небесных тел и их систем, обсерватория, орбита, планета, полярное сияние, протуберанец, скопление, созвездия и их классификация, солнечная корона, солнцестояние, состав Солнечной системы, телескоп, терминатор, туманность, фотосферные факелы, хромосфера, черная дыра, Эволюция, эклиптика, ядро;

<u>определения физических величин:</u> астрономическая единица, афелий, блеск звезды, возраст небесного тела, параллакс, парсек, период, перигелий,

физические характеристики планет и звезд, их химический состав, звездная величина, радиант, радиус светила, космические расстояния, светимость, световой год, сжатие планет, синодический и сидерический период, солнечная активность, солнечная постоянная, спектр светящихся тел Солнечной системы;

смысл работ и формулировку законов: Аристотеля, Птолемея, Галилея, Коперника, Бруно, Ломоносова, Гершеля, Браге, Кеплера, Ньютона, Леверье, Адамса, Галлея, Белопольского, Бредихина, Струве, Герцшпрунга-Рассела, Амбарцумяна, Барнарда, Хаббла, Доплера, Фридмана, Эйнштейна;

2. Уметь

- приводить примеры: роли астрономии в развитии цивилизации, использования методов исследований в астрономии, различных диапазонов электромагнитных излучений для получения информации об объектах Вселенной, получения астрономической информации с помощью космических аппаратов и спектрального анализа, влияния солнечной активности на Землю;
- описывать и объяснять: различия календарей, условия наступления солнечных и лунных затмений, фазы Луны, суточные движения светил, причины возникновения приливов и отливов; принцип действия оптического телескопа, взаимосвязь физико-химических характеристик звезд с использованием диаграммы "цвет-светимость", физические причины, определяющие равновесие звезд, источник энергии звезд и происхождение химических элементов, красное смещение с помощью эффекта Доплера;
- характеризовать особенности методов познания астрономии, основные элементы и свойства планет Солнечной системы, методы определения расстояний и линейных размеров небесных тел, возможные пути эволюции звезд различной массы;
- использовать карту звездного неба для нахождения координат светила; находить на небе основные созвездия Северного полушария, в том числе: Большая Медведица, Малая Медведица, Волопас, Лебедь, Кассиопея, Орион; самые яркие звезды, в том числе: Полярная звезда, Арктур, Вега, Капелла, Сириус, Бетельгейзе;
- использовать компьютерные приложения для определения положения Солнца, Луны и звезд на любую дату и время суток для данного населенного пункта;
- решать задачи на применение изученных астрономических законов;
- выражать результаты измерений и расчетов в единицах Международной системы;
- приводить примеры практического использования астрономических знаний о небесных телах и их системах;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни для: понимания взаимосвязи астрономии с другими

науками, в основе которых лежат знания по астрономии, отделение ее от лженаук; оценивания информации, содержащейся в сообщениях СМИ, Интернете, научно-популярных статьях.

Место курса в базисном учебном плане:

Федеральный базисный учебный план для образовательных учреждений Российской Федерации отводит 35 часов для обязательного изучения астрономии на базовом уровне ступени среднего (полного) общего образования. Согласно учебному плану МОУ СОШ №1 предмет астрономия относится к области естественных наук и на его изучение в 11 классе отводится 34 часа (34 учебных недели), из расчета 1 час в неделю. Уровень обучения - базовый. При планировании 1 час в неделю курс будет пройден в течение 11 класса.

<u>Основное содержание учебного предмета «Астрономия»</u> ПРЕДМЕТ АСТРОНОМИИ

Роль астрономии в развитии цивилизации. Эволюция взглядов человека на Вселенную. Геоцентрическая и гелиоцентрическая системы. Особенности методов познания в астрономии. Практическое применение астрономических исследований. История развития отечественной космонавтики. Первый искусственный спутник Земли, полет Ю.А. Гагарина. Достижения современной космонавтики.

ОСНОВЫ ПРАКТИЧЕСКОЙ АСТРОНОМИИ

Небесная сфера. Особые точки небесной сферы. Небесные координаты. Звездная карта, созвездия, использование компьютерных приложений для отображения звездного неба. Видимая звездная величина. Суточное движение светил. Связь видимого расположения объектов на небе и географических координат наблюдателя. Движение Земли вокруг Солнца. Видимое движение и фазы Луны. Солнечные и лунные затмения. Время и календарь.

ЗАКОНЫ ДВИЖЕНИЯ НЕБЕСНЫХ ТЕЛ

Структура и масштабы Солнечной системы. Конфигурация и условия видимости планет. Методы определения расстояний до тел Солнечной системы и их размеров. Небесная механика. Законы Кеплера. Определение масс небесных тел. Движение искусственных небесных тел.

СОЛНЕЧНАЯ СИСТЕМА Происхождение Солнечной системы. Система Земля - Луна. Планеты земной группы. Планеты-гиганты. Спутники и кольца планет. Малые тела Солнечной системы. Астероидная опасность.

МЕТОДЫ АСТРОНОМИЧЕСКИХ ИССЛЕДОВАНИЙ

Электромагнитное излучение, космические лучи и Гравитационные волны как источник информации о природе и свойствах небесных тел. Наземные и космические телескопы, принцип их работы. Космические аппараты.

Спектральный анализ. Эффект Доплера. Закон смещения Вина. Закон Стефана-Больцмана.

ЗВЕЗДЫ

Звезды: основные физико-химические характеристики и их взаимная связь. Разнообразие звездных характеристик и их закономерности. Определение расстояния до звезд, параллакс. Двойные и кратные звезды. Внесолнечные планеты. Проблема существования жизни во Вселенной. Внутреннее строение и источники энергии звезд. Происхождение химических элементов. Переменные и вспыхивающие звезды. Коричневые карлики. Эволюция звезд, ее этапы и конечные стадии. Строение Солнца, солнечной атмосферы. Проявления солнечной активности: пятна, вспышки, протуберанцы. Периодичность солнечной активности. Роль магнитных полей на Солнце. Солнечно-земные связи.

НАША ГАЛАКТИКА – МЛЕЧНЫЙ ПУТЬ

Состав и структура Галактики. Звездные скопления. Межзвездный газ и пыль. Вращение Галактики. Темная материя.

ГАЛАКТИКИ. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ

Открытие других галактик. Многообразие галактик и их основные характеристики. Сверхмассивные черные дыры и активность галактик. Представление о космологии. Красное смещение. Закон Хаббла. Эволюция Вселенной. Большой Взрыв. Реликтовое излучение. Темная энергия.

Содержание предмета «Астрономия» в программе (34 часа в год, 1 час в неделю)

Введение в астрономию (2ч)

Предмет астрономии. Структура и масштабы Вселенной. Наблюдения - основа астрономии.

Практические основы астрономии (5ч)

Видимые движения светил как следствие их собственного движения в пространстве, вращения земли и ее вращения вокруг Солнца. Звезды и созвездия. Наблюдения. Небесные координаты и звездные карты. Годичное движение Солнца. Эклиптика.

Движение и фазы Луны. Затмения Солнца и Луны. Наблюдения. Время и календарь.

Строение Солнечной системы (7ч)

Гелиоцентрическая система мира Коперника. Ее значение для науки и мировоззрения. Конфигурации планет и условия их видимости. Синодический и звездный периоды. Законы Кеплера. Определение расстояний до тел Солнечной системы и их размеров. Движение космических объектов под действием сил тяготения. Определение массы небесных тел.

Рубежная КР.

Природа тел Солнечной системы (6ч)

Солнечная система как комплекс тел, имеющих общее происхождение. Система Земля-Луна. Планеты земной группы. Наблюдения. Планеты-гиганты.

Спутники и кольца планет-гигантов. Малые тела Солнечной системы. Болиды и метеориты. Физическая обусловленность важнейших особенностей тел Солнечной системы.

Солнце и звезды (5ч)

Звезды - основные объекты Вселенной. Солнце - ближайшая звезда. Строение Солнца и его атмосферы. Активные образования на Солнце: пятна, вспышки, протуберанцы. Роль магнитных полей на Солнце. Периодичность Солнечной активности и ее прямая связь с геофизическими явлениями. Звезды, их основные характеристики. Определение расстояний до звезд. Годичный параллакс. Внутреннее строение звезд и источники их энергии. Эволюция звезд, ее этапы и конечные стадии. Белые карлики, нейтронные звезды и черные дыры.

Строение и эволюция Вселенной (4ч)

Состав и структура Галактики. Звездные скопления. Межзвездный газ и пыль. Вращение Галактики. Другие галактики и их основные характеристики. Активность ядер галактик. Квазары. Крупномасштабная структура Вселенной. Красное смещение. Реликтовое излучение. Расширение Вселенной. Строение и эволюция Вселенной как проявление физической закономерностей материального мира. Жизнь и разум во Вселенной.

Повторение. Резерв (5ч)

Астрономическая картина мира. Итоговая КР.

Учебно-тематический план курса астрономии 11 класс (базовый уровень).

1 час в неделю, всего - 34 ч.

№ п/п	Темы	Количеств	В т.ч., кол-во
		o	контрольных
		часов	работ
1	Предмет астрономии.	2	
2	Практические основы	5	
	астрономии		
3	Строение Солнечной	7	Рубежная КР
	системы.		
4	Природа тел Солнечной	6	
	системы.		
5	Солнце и звёзды.	5	
6	Строение и эволюция	4	
	Вселенной.	4	
5		5	IAICD
3	Повторение за курс 11	3	ИКР
	класса.		
	Всего	34	2